42 research outputs found

    Capturing pattern bi-stability dynamics in delay-coupled swarms

    Full text link
    Swarms of large numbers of agents appear in many biological and engineering fields. Dynamic bi-stability of co-existing spatio-temporal patterns has been observed in many models of large population swarms. However, many reduced models for analysis, such as mean-field (MF), do not capture the bifurcation structure of bi-stable behavior. Here, we develop a new model for the dynamics of a large population swarm with delayed coupling. The additional physics predicts how individual particle dynamics affects the motion of the entire swarm. Specifically, (1) we correct the center of mass propulsion physics accounting for the particles velocity distribution; (2) we show that the model we develop is able to capture the pattern bi-stability displayed by the full swarm model.Comment: 6 pages 4 figure

    Noise, Bifurcations, and Modeling of Interacting Particle Systems

    Full text link
    We consider the stochastic patterns of a system of communicating, or coupled, self-propelled particles in the presence of noise and communication time delay. For sufficiently large environmental noise, there exists a transition between a translating state and a rotating state with stationary center of mass. Time delayed communication creates a bifurcation pattern dependent on the coupling amplitude between particles. Using a mean field model in the large number limit, we show how the complete bifurcation unfolds in the presence of communication delay and coupling amplitude. Relative to the center of mass, the patterns can then be described as transitions between translation, rotation about a stationary point, or a rotating swarm, where the center of mass undergoes a Hopf bifurcation from steady state to a limit cycle. Examples of some of the stochastic patterns will be given for large numbers of particles

    Statistical multi-moment bifurcations in random delay coupled swarms

    Full text link
    We study the effects of discrete, randomly distributed time delays on the dynamics of a coupled system of self-propelling particles. Bifurcation analysis on a mean field approximation of the system reveals that the system possesses patterns with certain universal characteristics that depend on distinguished moments of the time delay distribution. Specifically, we show both theoretically and numerically that although bifurcations of simple patterns, such as translations, change stability only as a function of the first moment of the time delay distribution, more complex patterns arising from Hopf bifurcations depend on all of the moments

    Coherent Pattern Prediction in Swarms of Delay-Coupled Agents

    Full text link
    We consider a general swarm model of self-propelling agents interacting through a pairwise potential in the presence of noise and communication time delay. Previous work [Phys. Rev. E 77, 035203(R) (2008)] has shown that a communication time delay in the swarm induces a pattern bifurcation that depends on the size of the coupling amplitude. We extend these results by completely unfolding the bifurcation structure of the mean field approximation. Our analysis reveals a direct correspondence between the different dynamical behaviors found in different regions of the coupling-time delay plane with the different classes of simulated coherent swarm patterns. We derive the spatio-temporal scales of the swarm structures, and also demonstrate how the complicated interplay of coupling strength, time delay, noise intensity, and choice of initial conditions can affect the swarm. In particular, our studies show that for sufficiently large values of the coupling strength and/or the time delay, there is a noise intensity threshold that forces a transition of the swarm from a misaligned state into an aligned state. We show that this alignment transition exhibits hysteresis when the noise intensity is taken to be time dependent

    Intervention-Based Stochastic Disease Eradication

    Get PDF
    Disease control is of paramount importance in public health with infectious disease extinction as the ultimate goal. Although diseases may go extinct due to random loss of effective contacts where the infection is transmitted to new susceptible individuals, the time to extinction in the absence of control may be prohibitively long. Thus intervention controls, such as vaccination of susceptible individuals and/or treatment of infectives, are typically based on a deterministic schedule, such as periodically vaccinating susceptible children based on school calendars. In reality, however, such policies are administered as a random process, while still possessing a mean period. Here, we consider the effect of randomly distributed intervention as disease control on large finite populations. We show explicitly how intervention control, based on mean period and treatment fraction, modulates the average extinction times as a function of population size and rate of infection spread. In particular, our results show an exponential improvement in extinction times even though the controls are implemented using a random Poisson distribution. Finally, we discover those parameter regimes where random treatment yields an exponential improvement in extinction times over the application of strictly periodic intervention. The implication of our results is discussed in light of the availability of limited resources for control.Comment: 18 pages, 10 Figure

    The Origins of Time-Delay in Template Biopolymerization Processes

    Get PDF
    Time-delays are common in many physical and biological systems and they give rise to complex dynamic phenomena. The elementary processes involved in template biopolymerization, such as mRNA and protein synthesis, introduce significant time delays. However, there is not currently a systematic mapping between the individual mechanistic parameters and the time delays in these networks. We present here the development of mathematical, time-delay models for protein translation, based on PDE models, which in turn are derived through systematic approximations of first-principles mechanistic models. Theoretical analysis suggests that the key features that determine the time-delays and the agreement between the time-delay and the mechanistic models are ribosome density and distribution, i.e., the number of ribosomes on the mRNA chain relative to their maximum and their distribution along the mRNA chain. Based on analytical considerations and on computational studies, we show that the steady-state and dynamic responses of the time-delay models are in excellent agreement with the detailed mechanistic models, under physiological conditions that correspond to uniform ribosome distribution and for ribosome density up to 70%. The methodology presented here can be used for the development of reduced time-delay models of mRNA synthesis and large genetic networks. The good agreement between the time-delay and the mechanistic models will allow us to use the reduced model and advanced computational methods from nonlinear dynamics in order to perform studies that are not practical using the large-scale mechanistic models
    corecore